LABORATORY RESULTS ON AMMONIA REMOVAL FROM FLY ASH USING AN ACOUSTICALLY ENHANCED FLUIDIZED BED

E. K. Levy and K. B. Lawton

Energy Research Center

Lehigh University

THE PROBLEM

- SCR and SNCR NO_x Control Processes
 and
 - FGC for Improved Electrostatic Precipitator Operation
- Inject NH₃ or Urea into Boiler

$$NH_3 + SO_3 + H_2O \rightarrow NH_4 HSO_4$$

$$(NH_4)_2 SO_4$$

- NH₃ Concentrations on Ash Can Exceed 1000 ppm
- Potential:
 - Health Risk to Workers
 - Groundwater Contamination from Ponded Ash

APPROACH

- Process Ash Dry
- Heat It In Fluidized Bed
- Drive Off NH₃

Sketch of Bubbling Fluidized Bed

FLUIDIZED BED TERMINOLOGY

Uo

- Superficial Gas Velocity

U_{MB} - **M**inimum Bubbling Velocity

U_O - U_{MB} - Excess Gas Velocity

WHY USE FLUID IZED BED FOR NH3 REMOVAL?

- Dry Process
- Simple No Moving Parts
- Good Gas- Solids Contacting
- Good Tube-To-Bed Heat Transfer
 - Low Capital Costs
 - Low Operating Costs
- Low Fluidization Velocities → Low Air Flow Rates
 - Lowers Cost of Off-Gas Treatment for Removing NH₃ and Entrained Ash

SOME FLY ASHES ARE DIFFICULT TO FLUIDIZE

- Fine Particles
- Van der Waals Forces Cohesive
- Form Large Clusters of Particles in Bed
- Get Spouting or Channeling Instead of Regular Bubbling

USE ACOUSTICS TO IMPROVE FLUIDIZATION

OPTICAL FIBER PROBE

- 8 mm Tube with Two Fibers Located at Inside Wall of Bed 2.5 cm above Distributor
- Used to Measure Bubbling Behavior

Signals from Fiber Optic Probe $[U_0 - U_{MB} = 0.4 \text{ cm/s}]$

FLUIDIZATION PROPERTIES OF DIFFERENT FLY ASHES

		Without Sound		With Sound (140 dB)	
Sample Name	LOI %	U _{mb} cm/s	$U_{o}-U_{mb} = 0.4$	- U _{mb} -	$U_{o}^{-}U_{mb}^{-} = 0.4$
			f _b (Hz)		f _b (Hz)
Α	2.7			0.12	16.
В	6.7			0.17	9.7
. С	13.	0.40	15.	0.12	19.
D	2.8	0.49	2.5	0.10	21.
E	5.5			0.12	20.
F	5.3			0.12	6.9
G	5.2			0.12	16.
н	7.7			0.12	5.6
1	62.	0.76	*	0.22	*
J	16	0.31	1.7	0.12	9.9

*The fiber optic probe was unable to measure the bubbles because not enough light was reflected from the particles. This is due to the very high carbon content.

HIGH INTENSITY SOUND

- Reduces U_{MB}
- Improves Consistency of Bubbling
- Increases Average Bubble Frequency

Laboratory Batch Fluidized Bed

BATCH BED EXPERIMENTS

- Electrical Heating Elements Immersed in Bed
- Load in Cold Ash
- Fluidize and Heat Ash
- Remove Small Samples of Ash as Ash Heats Up
- Analyze for NH₃ Content

Ammonia Signal From UV Spectrometer During Ammonium Decomposition Test

CONTINUOUSLY OPERATING SYSTEM

Laboratory System

6" wide x 20 ft long

Up to 500 lb/hr

ENERGY COSTS

- Ash Fed to Bed at 275 °F
- Heated Electrically → 4 ¢ / kWh
- ~ \$ 2.50 / ton Ash for Energy Costs

OTHER HEATING OPTIONS

- Burn Natural Gas
- Use Economizer Flue Gas

WHAT'S NEXT?

- Test Some Other Ash Samples
- Test at a Power Plant
- Develop Commercial Scale Design

SPONSORS

- Cinergy Corporation
- Ontario Power Generation
- Constellation Energy
- First Energy